This article was downloaded by: On: *29 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



### Supramolecular Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713649759

## Kinetics and Mechanism of Reactions Between Tetranitrodibenzo Crown Ethers and Alkali Metal Hydroxides

Grzegorz Schroeder<sup>a</sup>; Bogusława Łeska<sup>a</sup> <sup>a</sup> Faculty of Chemistry, A. Mickiewicz University, Pozań, Poland

To cite this Article Schroeder, Grzegorz and Łeska, Bogusława(1998) 'Kinetics and Mechanism of Reactions Between Tetranitrodibenzo Crown Ethers and Alkali Metal Hydroxides', Supramolecular Chemistry, 9: 1, 17 – 24 To link to this Article: DOI: 10.1080/10610279808034962 URL: http://dx.doi.org/10.1080/10610279808034962

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SUPRAMOLECULAR CHEMISTRY, Vol. 9, pp. 17-24 Reprints available directly from the publisher Photocopying permitted by license only © 1998 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license under the Harwood Academic Publishers imprint, part of The Gordon and Breach Publishing Group. Printed in India.

# Kinetics and Mechanism of Reactions Between Tetranitrodibenzo Crown Ethers and Alkali Metal Hydroxides

#### GRZEGORZ SCHROEDER and BOGUSŁAWA ŁĘSKA

Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Pozań, Poland

(Received 25 April 1997)

The paper reports results of the kinetic and spectroscopic studies of reactions between tetranitrodibenzo crown ethers: TNDB 18C6, TNDB 24C8 and TNDB 30C10 or theirs analogs: 1, 2-dimethoxy-or 1, 2-diethoxybenzenes and alkali metal hydroxides: LiOH, NaOH, KOH, RbOH and CsOH in DMSO: water (95:5 v/v) mixture. These reactions lead via the non-concerted mechanism to formation of  $\sigma$ -adducts and complexes with metal cations.

Keywords: Kinetics, crown ethers

#### INTRODUCTION

Crown ethers and cryptands are characterized by a unique ability to form stable complexes with most cations, particularly with IA and IIA elements. The complexation of metal cations depends on the relative size of the cavity and the cation. 15-Crown-5 (15C5) and its derivatives have cavities 1.7-2.2 Å in diameter which matches the size of sodium cation (1.9 Å). The cavity 18-Crown-6 (18C6) and its derivatives vary in size from 2.6-3.2 Å. The size of potassium cation is (2.66 A). The size of rubidium and cesium cations are 2.96 Å and 3.38 Å, respectively. The cavity size of 24-Crown-8(24C8) is > 4 Å and 30-Crown-10(30C10) > 6 Å. One factor that affects complex stability constants is the degree of cavity-cation complementarity [1-4].

In the previous paper [5] we presented kinetic results for reactions of 4, 5-dinitrophenyl-substituted, 15- and 18-membered crown ethers: 15C5 and 18C6 with lithium, sodium, potassium and tetra-*n*-butylammonium hydroxides in DMSO: water (95:5 v/v). Nucleophilic aromatic substitution reaction of hydroxide ions with the benzene ring in the compounds was studied, along with cation complex formation. An excess of base was used relative to the amount of  $\sigma$ -complex which yields the dissociation of the  $\sigma$ -adduct.

Tetranitrodibenzo crown ethers (see Fig. 2) were studied along with, 1,2-dimethoxy- or 1,2-diethoxybenzenes (controls). Kinetic studies of the reactions of these compounds with hydroxide ions in DMSO: water (95:5 % v/v) mixed solvent were carried out.

#### EXPERIMENTAL

Tetranitrodibenzo crown ethers (TNDB-crown ethers) and their analogs were prepared using commercial benzocrown ethers or 1,2-dialkoxy-benzenes as starting materials. Nitration of the benezene rings was accomplished according to the method of Skerret (fuming nitric acid at -30 °C (Fig. 1) [6]. Reaction products were crystallized from the ethanol-acetonitrile mixture.

The structures of the tetranitrodibenzocrown ethers (TNDB-crown and their H-NMR spectra are collected in Figure 2.

Lithium, sodium, potassium, rubidium and cesium hydroxides were obtained from commerical sources. DMSO and water were purified by the standard method [7]. Hydroxide/water solutions were prepared directly prior to measurements. The base concentration was determined by titration. The base solutions used in kinetic measurements were prepared by mixing aqueous hydroxide solutions with DMSO.

#### **Kinetic Measurements**

The kinetic runs were carried out under pseudofirst order conditions (excess base) using a stopped-flow spectrophotometer (Applied Photophysics) with the cell block thermostated  $\pm 0.1$  °C. The observed rate constants were calculated from the traces of absorbance *vs.* time.

The observed rate constant  $k_{obs}$  depends on the case concentration  $k_{obs} = k[B] + k_-$ , where *k* is the rate constant for the forward proton transfer reaction,  $k_-$  is the rate constant for the reverse proton transfer reaction and [*B*] is the initial base concentration. Rate constants for the forward (*k*) reaction were calculated by linear least-square



FIGURE 1



FIGURE 2

fit of the variation of  $k_{obs}$  *vs*. base concentration. The activation parameters were calculated by linear least-squares fit of ln *k vs*. 1/*T*.

#### **RESULTS AND DISCUSSION**

The addition of hydroxides lithium, sodium, potassium, rubidium and cesium to TNDBcrown ethers or their analogs dissolved in DMSO-water led to formation of a colored product. Variation in the absorption spectra of TNDB-18C6 and NaOH in DMSO: water mixture as a function of time is presented in Figure 3.

The <sup>1</sup>H-NMR spectra of the crown ethers and their analogs (1, 2-dimethoxy-4, 5-dinitrobenzene and 1, 2-diethoxy-4, 5-dinitrobenzene) with NaOH in a deuterated DMSO mixture, after 30



FIGURE 3 Variation of absorption spectra of TNDB 18C6/ NaOH [0.005 M] in DMSO: water mixture (95.9 v/v) as a function of time. Start time-20 s, cycle time-20 s.

minutes, showed that the colored reaction product was a  $\sigma$  complex, formed by nucleophilic aromatic addition. The final reaction products of 1,2-dimethoxy-4,5-dinitrobenzene – NaOD; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, TMS; 7.30 ppm, d, 1H; 6.25 ppm, d, 1H; 4.10 ppm, s, 6H) and of TNDB 18C6 – NaOD; 1H NMR (DMSO-d<sub>6</sub>, TMS; 7.75 ppm, s, 2H; 7.30 ppm, d, 1H; 6.20 ppm, d, 1H; 3.80–4.50 ppm, m, 16H) are presented in Figure 4.

Kinetics studies were conducted by using a spectrophotometric method for reactions of these dinitrodialkoxybenzenes and crown ethers with lithium, sodium, potassium, cesium and rubidium hydroxides in DMSO: water (95:5 v/ v). All of the reactions studied were second order, i.e., first order with respect to the base and to crown ether concentrations. The process of metal cation – crown ether complex formation is faster than formation of the Meisenheimer complex and does not influence the kinetics of the  $\sigma$ -complex formation reaction (Fig. 5).



FIGURE 4



The kinetic results for reactions of dinitrodialkoxybenzenes and hydroxides collected in Tables I and II. They reveal a strong relationship between the rate constant of the reaction studied and the kind of the alkali metal hydroxides used. For the reaction of DMDNB (25 °C) with alkali metal hydroxides, the relationship between the rate constant and the kinds of bases used was as follows:

$$k_{\text{LiOH}} : k_{\text{NaOH}} : k_{\text{KOH}} : k_{\text{RbOH}} : k_{\text{CsOH}}$$
  
= 1 : 2 : 30 : 16 : 0.2

Whereas for the reaction with DEDNB (25  $^{\circ}$ C) it was:

$$k_{\text{LiOH}} : k_{\text{NaOH}} : k_{\text{KOH}} : k_{\text{RbOH}} : k_{\text{CsOH}}$$
  
= 1 : 1.5 : 23 : 23 : 0.2.

The different reactivity of alkali metal hydroxides is a result of the degree of changes in

| Temp. °C                                           |                                               |                                    | $10^4 k_{obs} [s^{-1}]$                                                       |                                                      |                                                     | · · · · · · · · · · · · · · · · · · ·                           | <b>5</b>                  |
|----------------------------------------------------|-----------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|---------------------------|
| Base concen                                        | it. 0.0050 M                                  | 0.0075 M                           | 0.100 M                                                                       | 0.0125 M                                             | 0.0150 M                                            | $10^{2} k[M^{-1}S^{-1}]$                                        | $10^{3}$ int [s $^{-1}$ ] |
|                                                    |                                               |                                    | DMDNB                                                                         | + LiOH                                               |                                                     |                                                                 |                           |
| 25                                                 | -                                             | _                                  | -                                                                             | -                                                    | -                                                   | 0.69 (exp)                                                      | _                         |
| 40                                                 | 1.32                                          | 1.95                               | 2.54                                                                          | 3.08                                                 | 3.54                                                | $2.22 \pm 0.1$                                                  | $26.0\pm0.8$              |
| 45                                                 | 2.24                                          | 3.25                               | 4.20                                                                          | 4.97                                                 | 5.72                                                | $3.47 \pm 0.1$                                                  | $6.0 \pm 1.0$             |
| 50                                                 | 2.85                                          | 4.24                               | 5.12                                                                          | 6.35                                                 | 7.42                                                | $4.50\pm7.0$                                                    | $7.0 \pm 2.0$             |
| $\Delta \mathbf{F}$                                | $H_{25}^{\neq}$ [kJmol <sup>-1</sup> ] = 59.6 | $5 \pm 8.5$                        | –ΔS <sup>≠</sup> <sub>25</sub> [Jm                                            | $ol^{-1}deg^{-1}] = 95$                              | 5.2 ± 26.9                                          | $\Delta G_{25}^{\neq} [kJmol^{-1}] = 85.3 \pm 8.5$              |                           |
|                                                    |                                               |                                    | DMDNB                                                                         | + NaOH                                               |                                                     |                                                                 |                           |
| 25                                                 | 0.85                                          | 1.44                               | 1.45                                                                          | 2.00                                                 | 2.50                                                | $1.54 \pm 0.20$                                                 | $1.04 \pm 2.2$            |
| 30                                                 | 1.63                                          | 2.53                               | 3.72                                                                          | 4.41                                                 | 5.20                                                | $3.61 \pm 0.20$                                                 | $-1.10 \pm 2.3$           |
| 35                                                 | 2.85                                          | 4.20                               | 5.51                                                                          | 7.12                                                 | 8.43                                                | $5.63 \pm 0.10$                                                 | $-0.10\pm1.1$             |
| 40                                                 | 4.30                                          | 6.40                               | 8.90                                                                          | 10.62                                                | 12.71                                               | $8.42\pm0.30$                                                   | $1.70 \pm 2.7$            |
| 45                                                 | 5.57                                          | 9.15                               | 12.50                                                                         | 15.62                                                | 18.95                                               | $13.20\pm0.10$                                                  | $-7.50\pm1.1$             |
| ΔI                                                 | $f_{25}^{\neq}$ [kJmol <sup>-1</sup> ] = 78.8 | $8 \pm 7.1$                        | −ΔS <sup>≠</sup> <sub>25</sub> [Jm                                            | $nol^{-1}deg^{-1}] = 1$                              | 4.1 ± 22.9                                          | $\Delta \mathrm{G}^{\neq}_{25}[\mathrm{kJmol}^{-1}]=83.1\pm7.1$ |                           |
|                                                    |                                               |                                    | DMDNB                                                                         | + KOH                                                |                                                     |                                                                 |                           |
| 25                                                 | 10.0                                          | 16.2                               | 20.1                                                                          | 25.1                                                 | 31.3                                                | $20.6 \pm 0.9$                                                  | $-0.60 \pm 0.9$           |
| 30                                                 | 17.2                                          | 24.7                               | 31.0                                                                          | 39.5                                                 | 48.0                                                | $30.6 \pm 0.20$                                                 | $15.0 \pm 10.0$           |
| 35                                                 | 24.2                                          | 34.1                               | 46.5                                                                          | 57.0                                                 | 67.3                                                | $43.6 \pm 0.8$                                                  | $21.0 \pm 9.0$            |
| 40                                                 | 35.0                                          | 52.5                               | 67.0                                                                          | 84.0                                                 | 100.5                                               | $65.0 \pm 0.9$                                                  | $28.0 \pm 10.0$           |
| 45                                                 | 61.0                                          | 88.0                               | 116.2                                                                         | 144.2                                                | 172.0                                               | $111.2\pm0.5$                                                   | $50.0 \pm 5.0$            |
| $\Delta \mathbf{I}$                                | $H_{25}^{\neq}$ [kJmol <sup>-1</sup> ] = 62.5 | 5 ± 7.1                            | $-\Delta S_{25}^{\neq}$ [Jmol <sup>-1</sup> deg <sup>-1</sup> ] = 49.1 ± 11.7 |                                                      |                                                     | ∆G <sup>≠</sup> [kJmol                                          | $^{-1}$ ]=77.1 ± 3.6      |
|                                                    | _                                             |                                    | DMDNB                                                                         | + RbOH                                               |                                                     |                                                                 |                           |
| 25                                                 | 8.3                                           | 10.2                               | 13.5                                                                          | 16.4                                                 | 18.7                                                | $10.8\pm0.5$                                                    | $26.0 \pm 5.2$            |
| 30                                                 | 10.5                                          | 16.3                               | 19.8                                                                          | 25.5                                                 | 28.6                                                | $18.2 \pm 1.0$                                                  | $19.0 \pm 11.0$           |
| 35                                                 | 11.5                                          | 17.5                               | 22.5                                                                          | 28.5                                                 | 34.2                                                | $22.6 \pm 0.4$                                                  | $2.8 \pm 3.6$             |
| 40                                                 | 17.3                                          | 30.2                               | 38.1                                                                          | 48.3                                                 | 56.0                                                | $38.2 \pm 2.0$                                                  | $-1.6 \pm 21.0$           |
| 45                                                 | 32.0                                          | 49.0                               | 65.3                                                                          | 82.8                                                 | 97.3                                                | $65.7\pm1.0$                                                    | $-4.8\pm11.0$             |
| $\Delta H_{25}^{\neq} [k]mol^{-1}] = 66.0 \pm 5.5$ |                                               | –ΔS <sup>≠</sup> <sub>25</sub> [Jπ | $nol^{-1}deg^{-1}] = 4$                                                       | $\Delta G_{25}^{\neq}  [k Jmol^{-1}] = 78.6 \pm 5.5$ |                                                     |                                                                 |                           |
|                                                    |                                               |                                    | DMDNB                                                                         | + CsOH                                               |                                                     |                                                                 |                           |
| 25                                                 | 7.22                                          | 11.34                              | 14.91                                                                         | 17.00                                                | 22.15                                               | $0.14 \pm 0.01$                                                 | $3.2 \pm 10.3$            |
| 30                                                 | 11.47                                         | 17.28                              | 22.35                                                                         | 27.11                                                | 34.10                                               | $0.22 \pm 0.01$                                                 | $4.2 \pm 8.6$             |
| 35                                                 | 18.23                                         | 25.93                              | 35.10                                                                         | 45.35                                                | 53.14                                               | $0.36 \pm 0.01$                                                 | $-1.5 \pm 10.3$           |
| 40                                                 | 25.14                                         | 37.23                              | 50.00                                                                         | 62.30                                                | 74.20                                               | $0.49 \pm 0.01$                                                 | $4.9 \pm 3.3$             |
| 45                                                 | 36.15                                         | 51.13                              | 67.11                                                                         | 84.44                                                | 105.00                                              | $0.68\pm0.02$                                                   | $3.6 \pm 2.6$             |
| $\Delta H_{25}^{\neq} [kJmol^{-1}] = 60.1 \pm 3.0$ |                                               |                                    | −ΔS <sup>≠</sup> <sub>25</sub> [Jr                                            | $\mathrm{nol}^{-1}\mathrm{deg}^{-1}] = 5$            | $\Delta G_{25}^{\neq}  [kJmol^{-1}] = 77.9 \pm 3.1$ |                                                                 |                           |

TABLE I Kinetic parameters ( $\pm$  standard deviation) for reaction between 1,2-dimethoxy-4,5-dinitrobenzene (DMDNB) and MOH in DMSO: water mixture (95 : 5 v/v)

dissociation and formation of different kinds of ion pairs i.e., loose or fight depending upon charge density and ion parameters [8-10]. The highest values for rate constants were observed for the reactions with KOH.

Kinetic results for the reactions of TNDB crown ethers and the hydroxides was collected in Tables III–V.

At 25 °C, for the reaction with TNDB 18C6, the relationship between the rate constant and the

bases was:

$$k_{\text{LiOH}} : k_{\text{NaOH}} : k_{\text{KOH}} : k_{\text{RbOH}} : k_{\text{CsOH}}$$
  
= 1 : 37 : 97 : 43 : 19.

The value of the rate constant for the reaction of TNDB 18C6 is distinctly higher than for the analogous reactions with DMDNB or DEDNB. The best steric adjustment and stability of metal cation-crown ether complex was obtained for the

| Temp. °C                                             |                                              |             | $10^4 k_{obs} [s^{-1}]$                                     |                                                                              |               |                                                      |                                                          |  |
|------------------------------------------------------|----------------------------------------------|-------------|-------------------------------------------------------------|------------------------------------------------------------------------------|---------------|------------------------------------------------------|----------------------------------------------------------|--|
| Base cond                                            | cent. 0.0050 M                               | 0.0075 M    | 0.0100 M                                                    | 0.0125 M                                                                     | 0.0150 M      | $10^{2}$ k [M <sup>-1</sup> s <sup>-1</sup> ]        | $10^5$ int [s $^{-1}$ ]                                  |  |
|                                                      |                                              |             | DEDNB                                                       | + LiOH                                                                       |               |                                                      |                                                          |  |
| 25                                                   | -                                            | -           | -                                                           | _                                                                            | -             | 0.64 (exp)                                           | -                                                        |  |
| 40                                                   | 1.00                                         | 1.93        | 2.47                                                        | 3.02                                                                         | 3.28          | $2.26 \pm 0.3$                                       | $0.8 \pm 3.0$                                            |  |
| 45                                                   | 1.75                                         | 3.02        | 3.78                                                        | 4.38                                                                         | 5.49          | $3.54 \pm 0.3$                                       | $2.0 \pm 3.0$                                            |  |
| 50                                                   | 2.87                                         | 4.35        | 5.62                                                        | 6.25                                                                         | 7.95          | $4.82\pm0.4$                                         | $6.0 \pm 4.0$                                            |  |
|                                                      | $\Delta H_{25}^{\neq} [kJmol^{-1}] = 61.2$   | $2 \pm 6.2$ | –ΔS <sub>25</sub> [Jm                                       | $ol^{-1}deg^{-1}] = 81$                                                      | $1.5 \pm 6.2$ | $\Delta G_{25}^{\neq}  [k Jmol^{-1}] = 85.5 \pm 6.2$ |                                                          |  |
|                                                      |                                              |             | DEDNB +                                                     | + NaOH                                                                       |               |                                                      |                                                          |  |
| 25                                                   |                                              |             |                                                             |                                                                              |               | 1.07 (exp)                                           |                                                          |  |
| 30                                                   | 0.98                                         | 1.13        | 1.73                                                        | 2.10                                                                         | 2.53          | $1.63 \pm 0.10$                                      | $0.07 \pm 1.5$                                           |  |
| 35                                                   | 1.80                                         | 2.70        | 3.58                                                        | 4.48                                                                         | 5.31          | $3.52 \pm 0.10$                                      | $0.54 \pm 0.3$                                           |  |
| 40                                                   | 3.01                                         | 4.30        | 5.61                                                        | 7.09                                                                         | 8.47          | $5.48\pm0.10$                                        | $2.10\pm0.9$                                             |  |
| 45                                                   | 4.65                                         | 6.61        | 8.77                                                        | 10.83                                                                        | 12.63         | $8.07\pm0.10$                                        | $6.30 \pm 1.4$                                           |  |
| 50                                                   | 6.70                                         | 9.91        | 12.53                                                       | 16.04                                                                        | 19.48         | $12.68\pm0.10$                                       | $2.60 \pm 3.8$                                           |  |
|                                                      | $\Delta H_{25}^{\neq} [k Jmol^{-1}] = 78.0$  | ) ± 5.9     | $-\Delta S^{ eq}_{25}$ [Jmc                                 | $-\Delta S_{25}^{\neq} [Jmol^{-1}deg^{-1}] = 21.3 \pm 19.0$                  |               |                                                      | $\Delta G_{25}^{\neq} \ [kJmol^{-1}] = 84.3 \pm 5.9$     |  |
|                                                      |                                              |             | DEDNB                                                       | + KOH                                                                        |               |                                                      |                                                          |  |
| 25                                                   | 10.0                                         | 15.3        | 19.0                                                        | 22.1                                                                         | 25.4          | $15.0\pm1.0$                                         | $33.0\pm10.0$                                            |  |
| 30                                                   | 17.2                                         | 24.7        | 31.0                                                        | 39.5                                                                         | 48.0          | $30.6\pm0.20$                                        | $15.0\pm10.0$                                            |  |
| 35                                                   | 24.2                                         | 34.1        | 46.5                                                        | 57.0                                                                         | 67.3          | $43.6\pm0.8$                                         | $21.0 \pm 9.0$                                           |  |
| 40                                                   | 35.0                                         | 52.5        | 67.0                                                        | 84.0                                                                         | 100.5         | $65.0 \pm 0.9$                                       | $28.0 \pm 10.0$                                          |  |
| 45                                                   | 61.0                                         | 88.0        | 116.2                                                       | 144.2                                                                        | 172.0         | $111.2 \pm 0.5$                                      | $50.0 \pm 5.0$                                           |  |
|                                                      | $\Delta H_{25}^{\neq} [k Jmol^{-1}] = 35.0$  | $) \pm 2.0$ | $-\Delta S_{25}^{\neq} [Jmol^{-1}deg^{-1}] = 143.6 \pm 6.4$ |                                                                              |               | $\Delta G_{25}^{\neq}$ [kJmol <sup>-1</sup>          | $[] = 77.9 \pm 2.0$                                      |  |
|                                                      |                                              |             | DEDNB +                                                     | + RbOH                                                                       |               |                                                      |                                                          |  |
| 25                                                   | 10.3                                         | 13.0        | 15.8                                                        | 21.0                                                                         | 25.4          | $15.3 \pm 1.2$                                       | $18.2\pm13.2$                                            |  |
| 30                                                   | 12.1                                         | 16.2        | 21.4                                                        | 27.2                                                                         | 32.0          | $20.3 \pm 0.6$                                       | $14.6\pm6.7$                                             |  |
| 35                                                   | 14.7                                         | 21.1        | 30.1                                                        | 37.6                                                                         | 43.0          | $29.2 \pm 1.3$                                       | $0.6\pm14.0$                                             |  |
| 40                                                   | 23.1                                         | 35.2        | 44.8                                                        | 55.4                                                                         | 64.9          | $41.5 \pm 1.0$                                       | $32.0 \pm 11.0$                                          |  |
| 45                                                   | 27.2                                         | 39.8        | 53.7                                                        | 65.3                                                                         | 79.8          | $52.3 \pm 0.9$                                       | $8.8 \pm 9.5$                                            |  |
| $\Delta H_{25}^{\neq}  [k] mol^{-1}] = 47.5 \pm 1.9$ |                                              |             | $-\Delta S_{25}^{\neq}$ [Jma                                | $-\Delta S_{25}^{\neq}$ [Jmol <sup>-1</sup> deg <sup>-1</sup> ] =102.3 ± 6.1 |               |                                                      | $\Delta G_{25}^{\neq} \ [kJmol^{-1}] = 77.8 \ \pm \ 1.9$ |  |
|                                                      |                                              |             | DEDNB +                                                     | + CsOH                                                                       |               |                                                      |                                                          |  |
| 25                                                   | 7.13                                         | 10.35       | 14.35                                                       | 19.20                                                                        | 21.28         | $0.15 \pm 0.01$                                      | $-3.9 \pm 9.8$                                           |  |
| 30                                                   | 10.03                                        | 15.39       | 20.55                                                       | 26.35                                                                        | 30.07         | $0.20 \pm 0.01$                                      | $0 \pm 7.9$                                              |  |
| 35                                                   | 15.33                                        | 22.47       | 30.10                                                       | 38.14                                                                        | 44.21         | $0.29 \pm 0.01$                                      | $6.7 \pm 7.3$                                            |  |
| 40                                                   | 20.35                                        | 30.01       | 39.15                                                       | 47.35                                                                        | 57.18         | $0.36 \pm 0.01$                                      | $2.4\pm6.3$                                              |  |
| 45                                                   | 27.48                                        | 39.71       | 53.77                                                       | 66.34                                                                        | 78.12         | $0.51\pm0.01$                                        | $1.9\pm8.9$                                              |  |
|                                                      | $\Delta H_{25}^{\neq}  [k Jmol^{-1}] = 45.4$ | ± 1.9       | $-\Delta S_{25}^{\neq} [Jmol^{-1}deg^{-1}] = 108.8 \pm 6.1$ |                                                                              |               | $\Delta G_{25}^{\neq} \ [kJmol^{-1}] = 77.8 \pm 1.9$ |                                                          |  |

TABLE II Kinetic parameters ( $\pm$  standard deviation) for reaction between 1,2-diethoxy-4,5-dinitrobenzene (DMDNB) and MOH in DMSO: water mixture (95 : 5 v/v)

following arrangement: potassium cation with TNDB 18C6. The highest values of rate constants for reactions of TNDB 18C6 with KOH is observed.

At 25 °C for the reaction with the crown ether characterised by larger cavity size, TNDB 24C8, the relationship between rate constant and that based used was follows:

$$k_{\text{LiOH}}: k_{\text{NaOH}}: k_{\text{KOH}}: k_{\text{RbOH}}: k_{\text{CsOH}}$$
  
= 1 : 11 : 10 : 18 : 15.

The dependence k = f (base used) is a result of 2:1 cation crown ether complex formation in reactions with lithium or sodium cations and TNDB 24C10. In the case of reactions with other bases, 1:1 cation – crown, ether complex is formed.

For the largest crown, at 25 °C, TNDB 30C10, the relationship between the rate constant and the bases used was found to be:

$$k_{\text{LiOH}} : k_{\text{NaOH}} : k_{\text{KOH}} : k_{\text{RbOH}} : k_{\text{CsOH}}$$
  
= 1 : 8 : 10 : 5 : 9.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp. °C                                                      |                                                |             | $10^4 k_{obs}[s^{-1}]$         |                           |                                                                   |                                                                              |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|-------------|--------------------------------|---------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Base concent                                                  | . 0.0050 M                                     | 0.0075 M    | 0.100 M                        | 0.0125 M                  | 0.0150 M                                                          | $10^{2}$ k[M <sup>-1</sup> s <sup>-1</sup> ] $10^{5}$ int [s <sup>-1</sup> ] |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TNDB 18C6 + LiOH>                                             |                                                |             |                                |                           |                                                                   |                                                                              |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                            | -                                              | -           | 0.26                           | 0.33                      | 0.39                                                              | $0.026 \pm 0.001$ $0.01 \pm 0.01$                                            |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                            | -                                              | -           | 3.78                           | 4.38                      | 5.49                                                              | $0.048 \pm 0.002$ $0.05 \pm 0.03$                                            |  |  |  |  |
| $ \begin{array}{c} \Delta H_{25}^{\sharp}  [kjmol^{-1}] = 24.8 \pm 2.3 & -\Delta S_{25}^{\sharp}  [jmol^{-1}deg^{-1}] = 192 \pm 7 & \Delta G_{25}^{\sharp}  [kjmol^{-1}] = 82.2 \pm 2.3 \\ \hline \\ TNDB  18C6 + NaOH \\ \hline \\ \begin{array}{c} 25 & 5.1 & 7.5 & 10.0 & 12.4 & 14.6 & 0.96 \pm 0.01 & 0.3 \pm 0.1 \\ 30 & 6.2 & 9.3 & 12.2 & 15.4 & 18.7 & 1.24 \pm 0.02 & -0.08 \pm 0.17 \\ 35 & 8.0 & 13.3 & 16.3 & 21.5 & 25.6 & 1.73 \pm 0.08 \pm 0.17 \\ 40 & 13.3 & 18.3 & 24.5 & 30.1 & 38.5 & 2.49 \pm 0.13 & 0.06 \pm 1.14 \\ 45 & 18.5 & 24.5 & 35.7 & 42.3 & 50.5 & 3.27 \pm 0.16 & 1.5 \pm 1.7 \\ \Delta H_{25}^{\sharp}  [kjmol^{-1}] = 43.6 \pm 4.6 & -\Delta S_{25}^{\sharp}  [jmol^{-1}deg^{-1}] = 100 \pm 15 & \Delta G_{25}^{\sharp}  [kjmol^{-1}] = 73.3 \pm 4.6 \\ \hline \\ TNDB  18C6 + KOH \\ \hline \\ \begin{array}{c} 25 & 13.5 & 18.9 & 24.9 & 32.8 & 38.0 & 2.52 \pm 0.09 & 0.46 \pm 1.0 \\ 30 & 20.5 & 27.2 & 37.2 & 46.5 & 56.2 & 3.62 \pm 0.11 & 1.42 \pm 1.2 \\ 35 & 25.4 & 37.4 & 48.1 & 60.1 & 72.2 & 4.65 \pm 0.05 & 2.12 \pm 0.6 \\ 40 & 32.3 & 47.8 & 62.7 & 79.5 & 94.5 & 6.24 \pm 0.06 & 0.92 \pm 0.7 \\ 45 & 43.7 & 63.8 & 85.0 & 106.3 & 124.5 & 8.16 \pm 0.12 & 3.02 \pm 1.3 \\ \Delta H_{25}^{\sharp}  [kjmol^{-1}] = 43.2 \pm 1.3 & -\Delta S_{25}^{\sharp}  [jmol^{-1}deg^{-1}] = 92 \pm 4 & \Delta G_{25}^{\sharp}  [kjmol^{-1}] = 70.7 \pm 1.3 \\ \hline \\ \begin{array}{c} TNDB  18C6 + ROH \\ 25 & 6.9 & 9.2 & 12.2 & 15.0 & 18.0 & 1.12 \pm 0.03 & 1.0 \pm 0.4 \\ 30 & 9.9 & 13.2 & 18.3 & 25.5 & 27.2 & 1.88 \pm 0.18 & 0.1 \pm 1.9 \\ 35 & 13.0 & 18.2 & 25.0 & 30.3 & 37.6 & 2.45 \pm 0.08 & 0.3 \pm 0.8 \\ 40 & 17.9 & 27.2 & 35.5 & 44.0 & 51.9 & 3.39 \pm 0.05 & 1.4 \pm 0.6 \\ 45 & 26.5 & 38.0 & 50.2 & 62.5 & 75.1 & 4.87 \pm 0.05 & 1.8 \pm 0.5 \\ \Delta H_{25}^{\sharp}  [kjmol^{-1}] = 53.2 \pm 3.2 & -\Delta S_{25}^{\sharp}  [jmol^{-1}deg^{-1}] = 65 \pm 10 & \Delta G_{25}^{\sharp}  [kjmol^{-1}] = 72.7 \pm 3.2 \\ \hline \\ \begin{array}{c} TNDB  18C6 + CsOH \\ 25 & 2.4 & 3.6 & 4.7 & 6.2 & 7.4 & 0.50 \pm 0.01 & -0.2 \pm 0.1 \\ 30 & 3.5 & 5.4 & 7.0 & 8.6 & 11.2 & 0.74 \pm 0.04 & -0.3 \pm 0.4 \\ 30 & 3.5 & 5.4 & 7.0 & 8.6 & 11.2 & 0.74 \pm 0.04 & -0.3 \pm 0.4 \\ 35 & 6.0 & 8.5 & 11.5 & 15.5 & 18.2 & 21.6 & 1.32 \pm 0.04 & 1.9 \pm 0.5 \\ 30 & 3.5 & 5.4 & 7.0 & 8.6 & 11.2 & 0.74 \pm 0.04 & -0.3 \pm 0.4 \\ 40 & 8.5 & 11.5 & 15.5 & 18.2 & 21.6 & 1.32 \pm 0.04 & 1.9 \pm 0.5 \\ $ | 60                                                            | -                                              | -           | 5.62                           | 6.25                      | 7.95                                                              | $0.084 \pm 0.005 -0.01 \pm 0.06$                                             |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta H$                                                    | $\frac{1}{25}$ [kJmol <sup>-1</sup> ] = 24.8   | $3 \pm 2.3$ | −ΔS <sup>≠</sup> <sub>25</sub> | $[Jmol^{-1}deg^{-1}] = 1$ | $\Delta G_{25}^{\neq} \text{ [kJmol}^{-1}\text{]} = 82.2 \pm 2.3$ |                                                                              |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                                                |             | TNDB 180                       | C6 + NaOH                 |                                                                   |                                                                              |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                            | 5.1                                            | 7.5         | 10.0                           | 12.4                      | 14.6                                                              | $0.96 \pm 0.01$ $0.3 \pm 0.1$                                                |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                            | 6.2                                            | 9.3         | 12.2                           | 15.4                      | 18.7                                                              | $1.24 \pm 0.02 -0.08 \pm 0.17$                                               |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                            | 8.0                                            | 13.3        | 16.3                           | 21.5                      | 25.6                                                              | $1.73 \pm 0.08 \qquad -0.3 \pm 0.8$                                          |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                            | 13.3                                           | 18.3        | 24.5                           | 30.1                      | 38.5                                                              | $2.49 \pm 0.13$ $0.06 \pm 1.14$                                              |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                            | 18.5                                           | 24.5        | 35.7                           | 42.3                      | 50.5                                                              | $3.27 \pm 0.16$ $1.5 \pm 1.7$                                                |  |  |  |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta H$                                                    | $_{25}^{\neq}$ [kJmol <sup>-1</sup> ] = 43.6   | $5 \pm 4.6$ | $-\Delta S^{ eq}_{25}$ [       | $Jmol^{-1}deg^{-1}] = 1$  | $\Delta G_{25}^{\neq} \ [kJmol^{-1}] = 73.3 \pm 4.6$              |                                                                              |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                                                |             | TNDB 18                        | C6 + KOH                  |                                                                   |                                                                              |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                            | 13.5                                           | 18.9        | 24.9                           | 32.8                      | 38.0                                                              | $2.52 \pm 0.09$ $0.46 \pm 1.0$                                               |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                            | 20.5                                           | 27.2        | 37.2                           | 46.5                      | 56.2                                                              | $3.62 \pm 0.11$ $1.42 \pm 1.2$                                               |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                            | 25.4                                           | 37.4        | 48.1                           | 60.1                      | 72.2                                                              | $4.65 \pm 0.05$ $2.12 \pm 0.6$                                               |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                            | 32.3                                           | 47.8        | 62.7                           | 79.5                      | 94.5                                                              | $6.24 \pm 0.06$ $0.92 \pm 0.7$                                               |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                            | 43.7                                           | 63.8        | 85.0                           | 106.3                     | 124.5                                                             | $8.16 \pm 0.12$ $3.02 \pm 1.3$                                               |  |  |  |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta H$                                                    | $_{25}^{\neq}$ [kJmol <sup>-1</sup> ] = 43.2   | $2 \pm 1.3$ | $-\Delta S_{25}^{\neq}$        | $[Jmol^{-1}deg^{-1}] =$   | $\Delta G_{25}^{\neq}  [k Jmol^{-1}] = 70.7 \pm 1.3$              |                                                                              |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                                                |             | TNDB 18                        | C6 + RbOH                 |                                                                   |                                                                              |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                            | 6.9                                            | 9.2         | 12.2                           | 15.0                      | 18.0                                                              | $1.12 \pm 0.03$ $1.0 \pm 0.4$                                                |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                            | 9.9                                            | 13.2        | 18.3                           | 25.5                      | 27.2                                                              | $1.88 \pm 0.18$ $0.1 \pm 1.9$                                                |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                            | 13.0                                           | 18.2        | 25.0                           | 30.3                      | 37.6                                                              | $2.45 \pm 0.08$ $0.3 \pm 0.8$                                                |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                            | 17.9                                           | 27.2        | 35.5                           | 44.0                      | 51.9                                                              | $3.39 \pm 0.05$ $1.4 \pm 0.6$                                                |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                            | 26.5                                           | 38.0        | 50.2                           | 62.5                      | 75.1                                                              | $4.87 \pm 0.05$ $1.8 \pm 0.5$                                                |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta H_{25}^{\neq}  [k \text{Jmol}^{-1}] = 53.2  \pm  3.2$ |                                                |             | $-\Delta S_{25}^{\neq}$        | $[Jmol^{-1}deg^{-1}] = 0$ | $\Delta G_{25}^{\neq} \text{ [kJmol}^{-1}\text{]} = 72.7 \pm 3.2$ |                                                                              |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                |             | TNDB 18                        | C6 + CsOH                 |                                                                   |                                                                              |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                            | 2.4                                            | 3.6         | 4.7                            | 6.2                       | 7.4                                                               | $0.50 \pm 0.01$ $-0.2 \pm 0.1$                                               |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                            | 3.5                                            | 5.4         | 7.0                            | 8.6                       | 11.2                                                              | $0.74 \pm 0.04$ $-0.3 \pm 0.4$                                               |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                            | 6.0                                            | 8.5         | 10.8                           | 13.3                      | 16.0                                                              | $0.99 \pm 0.02$ $1.0 \pm 0.2$                                                |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                            | 8.5                                            | 11.5        | 15.5                           | 18.2                      | 21.6                                                              | $1.32 \pm 0.04$ $1.9 \pm 0.5$                                                |  |  |  |  |
| $\Delta H_{25}^{\neq} [k]mol^{-1}] = 50.5 \pm 2.3 \qquad -\Delta S_{25}^{\neq} [Jmol^{-1}deg^{-1}] = 82 \pm 8 \qquad \Delta G_{25}^{\neq} [k]mol^{-1}] = 74.8 \pm 2.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                            | 11.4                                           | 15.6        | 20.6                           | 25.9                      | 31.4                                                              | $2.01 \pm 0.06$ $0.9 \pm 0.6$                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔH                                                            | ${}^{\neq}_{25}$ [k]mol <sup>-1</sup> ] = 50.5 | 5 ± 2.3     | $-\Delta S_{25}^{\neq}$        | $[Jmol^{-1}deg^{-1}] =$   | $\Delta G_{25}^{\neq}  [k]mol^{-1}] = 74.8 \pm 2.3$               |                                                                              |  |  |  |  |

TABLE III Kinetic parameters ( $\pm$  standard deviation) for reaction between TNDB 18C6 and MOH in DMSO: water mixture (95 : 5 v/v)

An influence of 2:1 cation metal – crown ether complex formation on the rate constant was observed in reactions with lithium, sodium, or potassium hydroxides. The large difference in size between the cation and the crown ether cavity is responsible for the kinetics of the reactions studied. In  $\sigma$ -complex formation, the kinetic macrocyclic effect takes a maximum value for arrangements characterised by the optimum adjustment of sizes of the cation and the cavity. For the following ions: Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>,  $Rb^+$  and  $Cs^+$ , the hydration numbers are 25.3, 16.6, 10.5, 10.0 and 9.9, whereas the negative hydration enthalpies are 519, 406, 322, 293 and 264 [kJ mol<sup>-1</sup>], respectively [11]. These values determine the activation parameters of the reactions studied.

Values of  $\Delta G^{\neq}$  for reactions between crown ethers and alkali metal hydroxides are lower than for reactions of the latter with dialkoxydinitrobenzenes. For reaction with LiOH (Li<sup>+</sup> is characterized by the highest values of hydration

| Temp. °C                        |                                                     |             | $10^4 k_{obs} [s^{-1}]$                                                      |                          |             |                                                       |                                         |
|---------------------------------|-----------------------------------------------------|-------------|------------------------------------------------------------------------------|--------------------------|-------------|-------------------------------------------------------|-----------------------------------------|
| Base concent.                   | 0.0050 M                                            | 0.0075 M    | 0.0100 M                                                                     | 0.0125 M                 | 0.0150 M    | $10^{2}$ k [M <sup>-1</sup> s <sup>-1</sup> ]         | 10 <sup>5</sup> int [s <sup>- 1</sup> ] |
|                                 |                                                     |             | TNDB 2                                                                       | 4C8 + LiOH               |             |                                                       |                                         |
| 25                              | -                                                   | -           | 0.30                                                                         | 0.37                     | 0.45        | $0.030\pm0.002$                                       | $-0.01\pm0.01$                          |
| 45                              | -                                                   | -           | 0.47                                                                         | 0.57                     | 0.65        | $0.036\pm0.002$                                       | $0.11\pm0.03$                           |
| 60                              | -                                                   | -           | 0.69                                                                         | 0.86                     | 1.00        | $0.062 \pm 0.003$                                     | $0.08\pm0.04$                           |
| $\Delta H_{25}^{\neq}$          | $[kJmol^{-1}] = 13.8$                               | $3 \pm 6.7$ | $-\Delta S_{25}^{\neq}$ [Jmol <sup>-1</sup> deg <sup>-1</sup> ] =229 ± 21    |                          |             | $\Delta G_{25}^{\neq} \ [k] mol^{-1}] = 82.0 \pm 6.7$ |                                         |
|                                 |                                                     |             | TNDB 24                                                                      | 4C8 + NaOH               |             |                                                       |                                         |
| 25                              | 1.6                                                 | 2.6         | 3.4                                                                          | 4.2                      | 5.0         | $0.34\pm0.01$                                         | $0\pm0.1$                               |
| 30                              | 2.6                                                 | 4.2         | 5.5                                                                          | 7.0                      | 8.2         | $0.56 \pm 0.01$                                       | $0 \pm 0.1$                             |
| 35                              | 5.1                                                 | 7.6         | 10. <b>2</b>                                                                 | 12.7                     | 15.3        | $1.02 \pm 0.01$                                       | $0.1 \pm 0.1$                           |
| 40                              | 7.6                                                 | 11.5        | 15.1                                                                         | 19.0                     | 22.5        | $1.49\pm0.02$                                         | $0.2 \pm 0.2$                           |
| 45                              | 10.5                                                | 15.7        | 21.5                                                                         | 26.5                     | 32.5        | $2.19\pm0.03$                                         | $-0.6 \pm 0.3$                          |
| $\Delta H_{25}^{\neq}$          | $[kJmol^{-1}] = 71.8$                               | $3 \pm 3.4$ | ΔS <sup>≠</sup> <sub>25</sub> []                                             | $[mol^{-1}deg^{-1}] = 1$ | $13 \pm 11$ | $\Delta G_{25}^{\neq}$ [kJmol <sup>-1</sup> ]         | ≈ 75.7 ± 3.4                            |
|                                 |                                                     |             | TNDB 2                                                                       | 4C8 + KOH                |             |                                                       |                                         |
| 25                              | 1.6                                                 | 2.2         | 3.0                                                                          | 3.7                      | 4.5         | $0.29 \pm 0.01$                                       | $0.1 \pm 0.1$                           |
| 30                              | 2.7                                                 | 4.0         | 5.2                                                                          | 6.2                      | 7.7         | $0.49 \pm 0.02$                                       | $0.3 \pm 0.2$                           |
| 35                              | 4.0                                                 | 5.8         | 7.4                                                                          | 9.81                     | 11.8        | $0.78 \pm 0.03$                                       | $0.1 \pm 0.3$                           |
| 40                              | 5.6                                                 | 8.5         | 11.3                                                                         | 14.3                     | 17.0        | $1.14\pm0.09$                                         | $0.1 \pm 0.1$                           |
| 45                              | 7.5                                                 | 11.3        | 15.4                                                                         | 19.3                     | 23.3        | $1.58\pm0.01$                                         | $0.5\pm0.1$                             |
| $\Delta H_{25}^{\neq}$          | $[kJmol^{-1}] = 64.4 \pm 2.1$                       |             | $-\Delta S_{25}^{\neq} [Jmol^{-1}deg^{-1}] = 39 \pm 10$                      |                          |             | $G_{25}^{\neq}$ [kJmol <sup>-1</sup> ]                | $= 76.0 \pm 3.0$                        |
|                                 |                                                     |             | TNDB 24                                                                      | 4C8 + RbOH               |             |                                                       |                                         |
| 25                              | 2.9                                                 | 4.2         | 5.8                                                                          | 7.0                      | 8.4         | $0.55 \pm 0.01$                                       | $0.1 \pm 0.2$                           |
| 30                              | 3.8                                                 | 5.8         | 7.7                                                                          | 9.6                      | 11.6        | $0.78\pm0.01$                                         | $-0.1 \pm 0.1$                          |
| 35                              | 5.5                                                 | 8.8         | 11. <b>2</b>                                                                 | 14.3                     | 16.7        | $1.12 \pm 0.03$                                       | $0.1\pm0.4$                             |
| 40                              | 7.3                                                 | 11.4        | 15.0                                                                         | 18.3                     | 22.5        | $1.50 \pm 0.02$                                       | $-0.1\pm0.2$                            |
| 45                              | 9.6                                                 | 15.2        | 20.6                                                                         | 26.2                     | 31.2        | $2.17\pm0.02$                                         | $0.1 \pm 0.3$                           |
| ΔH <sup>≠</sup> <sub>25</sub>   | $H_{25}^{\neq}$ [kJmol <sup>-1</sup> ] = 51.1 ± 1.0 |             | $-\Delta S_{25}^{\neq} $ [Jmol <sup>-1</sup> deg <sup>-1</sup> ] =79 $\pm$ 3 |                          |             | $\Delta G_{25}^{\neq}  [k] mol^{-1}] = 74.6 \pm 1.0$  |                                         |
|                                 |                                                     |             | TNDB 24                                                                      | 4C8 + CsOH               |             |                                                       |                                         |
| 25                              | 2.7                                                 | 3.3         | 4.8                                                                          | 6.0                      | 7.1         | $0.46 \pm 0.03$                                       | $0.2 \pm 0.3$                           |
| 30                              | 3.5                                                 | 5.2         | 6.8                                                                          | 8.6                      | 10.3        | $0.68\pm0.01$                                         | $0.1\pm0.1$                             |
| 35                              | 5.1                                                 | 7.8         | 10. <b>2</b>                                                                 | 12.7                     | 15.4        | $1.02 \pm 0.01$                                       | $0.1\pm0.1$                             |
| 40                              | 7.4                                                 | 11.3        | 14.7                                                                         | 18.7                     | 22.5        | $1.50\pm0.02$                                         | $-0.1\pm0.1$                            |
| 45                              | 9.6                                                 | 14.5        | 19.5                                                                         | 42.7                     | 29.5        | $2.00 \pm 0.02$                                       | $-0.4\pm0.1$                            |
| ∆H <sup>≠</sup> <sub>25</sub> [ | $k Jmol^{-1}] = 56.4$                               | ± 15        | $-\Delta S_{22}^{\neq}$                                                      | $[k \ Jmol]^1] = 62$     | $\pm$ 5     | $\Delta G_{25}^{\neq}$ [k]mol <sup>-1</sup> ]         | = 75.0 ± 1.5                            |
|                                 |                                                     |             |                                                                              |                          |             |                                                       |                                         |

TABLE IV Kinetic parameters ( $\pm$  standard deviation) for reaction between TNDB 24C10 and MOH in DMSO: water mixture (95 : 5 v/v)

number of ions and negative hydration enthalpy), we observe a maximum for the free enthalpy of the activation and the largest negative value for the activation entropy describing the solvation effect.

All other reactions are also characterized by large negative values for the activation entropy. The ionic transition states of these reactions are more soluble than are the initial states. The energy barrier of the enthalpy of activation depends on the base used and upon solvation effects. The results obtained show that the  $\sigma$ -complex formation process is strongly dependent on the ability of nitrophenyl crown ethers, to complex alkali metals cations. The facility of  $\sigma$ -complex formation increases for arrangements in which the cation is built into the crown ether structure and a hydroxyl group (OH<sup>-</sup>) does not attack a neutral molecule, but does when the whole system is rendered positive by formation of a charged complex. The cation assisted mechanism is responsible for this process.

| Temp. °                    | С                                                                                                              |                                                                                                      |                                          | $10^4 k_{obs} [s^{-1}]$                                                  |                                                                                |                                               |                                                                                                                                                    |                                                                                                                     |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Base cor                   | ncent.                                                                                                         | 0.0050 M                                                                                             | 0.0075 M                                 | 0.100 M                                                                  | 0.0125 M                                                                       | 0.0150 M                                      | 10 <sup>2</sup> k [M <sup>-1</sup> s <sup>-1</sup>                                                                                                 | ] 10 <sup>5</sup> int [s <sup>- 1</sup> ]                                                                           |  |  |
| TNDB 24C8 + LiOH           |                                                                                                                |                                                                                                      |                                          |                                                                          |                                                                                |                                               |                                                                                                                                                    |                                                                                                                     |  |  |
| 25<br>40<br>60             |                                                                                                                | -                                                                                                    |                                          | 0.34<br>0.50<br>0.63                                                     | 0.47<br>0.64<br>0.77                                                           | 0.56<br>0.75<br>0.93                          | $\begin{array}{c} 0.044 \pm 0.005 \\ 0.050 \pm 0.003 \\ 0.03 \pm 0.03 \end{array}$                                                                 | $-0.09 \pm 0.06$<br>$0.01 \pm 0.04$<br>$0.03 \pm 0.03$                                                              |  |  |
|                            | ΔH <sup>≠</sup> <sub>25</sub> [k                                                                               | $[mol^{-1}] = 3.0$                                                                                   | ± 0.4                                    | $-\Delta S_{25}^{\neq}$ [Jmol <sup>-1</sup> deg <sup>-1</sup> ] =261 ± 1 |                                                                                |                                               | $\Delta G_{25}^{\neq}  [k Jmol^{-1}] = 80.9 \pm 0.4$                                                                                               |                                                                                                                     |  |  |
|                            |                                                                                                                |                                                                                                      |                                          | TNDB 30C                                                                 | 10 + NaOH                                                                      |                                               |                                                                                                                                                    |                                                                                                                     |  |  |
| 25<br>30<br>35<br>40<br>45 |                                                                                                                | 1.9<br>4.2<br>6.8<br>9.5<br>12.1                                                                     | 2.7<br>6.5<br>10.0<br>14.1<br>19.0       | 3.7<br>8.6<br>13.6<br>19.0<br>26.4                                       | 4.5<br>11.0<br>16.8<br>23.6<br>32.5                                            | 5.4<br>12.9<br>20.0<br>28.6<br>39.7           | $\begin{array}{c} 0.35 \pm 0.01 \\ 0.88 \pm 0.02 \\ 1.33 \pm 0.02 \\ 1.91 \pm 0.02 \\ 2.75 \pm 0.04 \end{array}$                                   | $\begin{array}{c} 0.12 \pm 0.07 \\ -0.12 \pm 0.18 \\ 0.16 \pm 0.17 \\ -0.12 \pm 0.16 \\ -1.50 \pm 0.40 \end{array}$ |  |  |
|                            | ΔH <sup>≠</sup> <sub>25</sub> [k]                                                                              | $[mol^{-1}] = 75.0$                                                                                  | ) ± 9.5                                  | −ΔS <sup>≠</sup> <sub>25</sub> [                                         | $Jmol^{-1}deg^{-1}] = 4$                                                       | $16 \pm 31$                                   | $\Delta G_{25}^{\neq} \ [k]mol^{-1}] = 76.2 \pm 9.5$                                                                                               |                                                                                                                     |  |  |
|                            |                                                                                                                |                                                                                                      |                                          | TNDB 300                                                                 | C10 + KOH                                                                      |                                               |                                                                                                                                                    |                                                                                                                     |  |  |
| 25<br>30<br>35<br>40<br>45 |                                                                                                                | 2.0<br>4.2<br>6.2<br>7.6<br>9.7                                                                      | 2.7<br>6.0<br>9.2<br>11.4<br>14.3        | 4.5<br>8.0<br>12.5<br>15.2<br>19.4                                       | 5.5<br>10.2<br>15.0<br>18.9<br>24.3                                            | 6.2<br>11.9<br>18.0<br>22.6<br>29.0           | $\begin{array}{c} 0.45 \pm 0.03 \\ 0.78 \pm 0.17 \\ 1.18 \pm 0.03 \\ 1.50 \pm 0.01 \\ 1.94 \pm 0.02 \end{array}$                                   | $-0.4 \pm 0.3 \\ 0.2 \pm 0.2 \\ 0.4 \pm 0.3 \\ 0.1 \pm 0.0 \\ 0.0 \pm 0.2$                                          |  |  |
| 10                         | $\Delta H_{\pm}^{\pm}$ [k]mol <sup>-1</sup> ] = 54.0 ± 5.5                                                     |                                                                                                      |                                          | -ΔS <sup>≠</sup> [                                                       | $[\text{Imol}^{-1}\text{deg}^{-1}] = 0$                                        | $59 \pm 18$                                   | ΔG <sup>≠</sup> [kImol <sup>−</sup>                                                                                                                | $[-1] = 74.8 \pm 5.5$                                                                                               |  |  |
|                            | $= -\frac{1}{25} (10 + R_{\rm D}) = 10 = 10 = 10 = 10$ TNDB 30C10 + ROH                                        |                                                                                                      |                                          |                                                                          |                                                                                |                                               |                                                                                                                                                    | -                                                                                                                   |  |  |
| 25<br>30<br>35<br>40<br>45 | лн≠ il                                                                                                         | $ \begin{array}{r} 1.0\\ 3.1\\ 5.6\\ 7.8\\ 11.3\\ \text{Imp} \left[ -1 \right] = 74  6 \end{array} $ | 1.7<br>5.2<br>8.6<br>11.6<br>15.4        | 2.3<br>6.8<br>11.3<br>15.6<br>20.6                                       | 2.6<br>8.5<br>14.0<br>19.2<br>25.4                                             | 3.2<br>10.2<br>16.6<br>23.1<br>30.8<br>7 + 59 | $0.21 \pm 0.02 \\ 0.70 \pm 0.02 \\ 1.09 \pm 0.02 \\ 1.53 \pm 0.01 \\ 1.96 \pm 0.04 \\ 0.04$                                                        | $\begin{array}{c} 0.21 \pm 0.02 \\ -0.24 \pm 0.20 \\ 0.26 \pm 0.18 \\ 0.18 \pm 0.13 \\ 1.10 \pm 0.50 \end{array}$   |  |  |
|                            | $\Delta G_{25}$ [k] fill $j = 74.0 \pm 10$ $-\Delta G_{25}$ [k] fill $\Delta G_{25}$ [k] fill $j = 70.1 \pm 3$ |                                                                                                      |                                          |                                                                          |                                                                                |                                               |                                                                                                                                                    |                                                                                                                     |  |  |
| 25<br>30<br>35<br>40<br>45 | ΔH <sup>≠</sup> [k]                                                                                            | 2.22.63.24.05.07mol-1] = 37.0                                                                        | 3.5<br>4.2<br>5.3<br>6.4<br>8.2<br>± 4.4 | 4.5<br>5.6<br>7.0<br>8.4<br>11.0<br>−ΔS <sup>≠</sup> <sub>25</sub> []    | 5.5<br>7.0<br>8.9<br>10.7<br>13.5<br>Jmol <sup>-i</sup> deg <sup>-1</sup> ] =1 | 6.2<br>8.5<br>11.6<br>12.8<br>16.5<br>28 ± 14 | $\begin{array}{c} 0.40 \pm 0.02 \\ 0.58 \pm 0.01 \\ 0.81 \pm 0.04 \\ 0.88 \pm 0.13 \\ 1.13 \pm 0.03 \\ \Delta G_{25}^{\neq} \ [kJmol] \end{array}$ | $\begin{array}{c} 0.4 \pm 0.3 \\ 0.2 \pm 0.1 \\ -0.9 \pm 0.4 \\ -0.3 \pm 0.2 \\ -0.5 \pm 0.3 \end{array}$           |  |  |

TABLE V Kinetic parameters (± standard deviation) for reaction between TNDB 30C10 and MOH in DMSO: water mixture (95:5 v/v)

#### References

- [1] Hiraoka, M. (1986). Crown Compounds, Their Characteristics and Applications, Elsevier, Amsterdam.
- Izatt, R., Bradshaw, J. S., Pawlak, K., Bruening, L. and Bryon, J. T. (1991). *Chem. Rev.*, **92**, 1261.
   Izatt, R., Bradshaw, J. S., Pawlak, K., Bruening, L. and
- Bryon, J. T. (1991). Chem. Rev., 91, 1721.
- [4] Gokel, G. (1991). Crown Ethers and Cryptands, The Royal Society of Chemistry, Cambridge.
- [5] Schroeder, G., Łęska, B. and Gierczyk, B. (1994). ACH Models in Chemistry, 131, 791.
- [6] Skerrett, E. J., Woodcook, D. (1952). J. Chem. Soc., 2807.
  [7] Riddick, A. J. and Bunger, W. B. (1979). Techniques of Organic Chemistry, 2nd edn., Wiley, Interscience, New York.
- [8] Jones, J. R. (1993). Progress in Reaction Kinetics, 7, 1.
- [9] Jones, J. R. (1968). Trans. Faraday Soc., 64, 440.
- [10] Msayib, K. J. and Watt, C. I. F. (1992). Chem. Soc. Rev., 237.
- [11] Fiałkow, A. N., Żytomirski, J. A. and Tarasenko, J. A. (1983). Physical Chemistry of Non-water Solution, PWN, Warszawa.